Axion cosmology and domain walls

T. Hiramatsu, M. Kawasaki and KS, arXiv: 1012.4558 [astro-ph.CO] (published yesterday: JCAP08(2011)030)

Ken'ichi Saikawa ICRR, The University of Tokyo

Abstract

- Reargue axion cosmology which suffers from the domain wall problem
- Two dimensional lattice simulation of domain walls bounded by strings which arise naturally in axion models
- Estimate the decay time of domain walls
- Constrain the model parameters
- Decay of domain wall
 - → Production of graviational waves

Axions

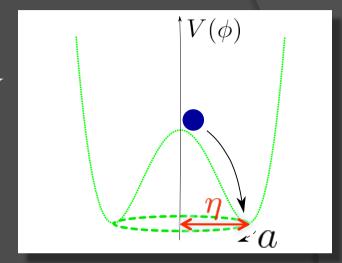
Strong CP problem in QCD

$$\mathcal{L}_{\theta} = \frac{\theta}{32\pi^2} G^{a\mu\nu} \tilde{G}^a_{\mu\nu}$$

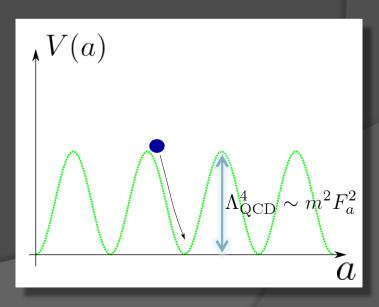
- Violates CP (observation: $\theta \lesssim 10^{-10}$)
- Why θ is so small?
- Solution: Peccei-Quinn (PQ) mechanism
 - Introduce U(1)_{PO} symmetry

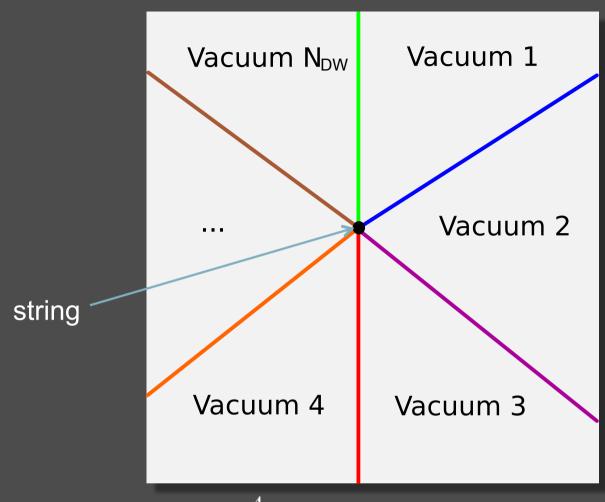
Peccei and Quinn (1977)

- ullet heta is dynamically set into zero
- Pseudo-Nambu-Goldstone boson from spontaneous breaking of U(1)_{PQ}



Axion


Cosmological Evolution

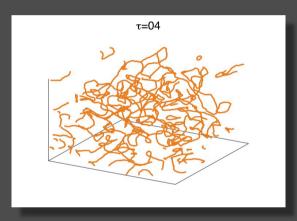

- ullet Peccei-Quinn (PQ) field ϕ
- \bullet $T \lesssim F_a$ $F_a = \eta/N_{\rm DW} \sim 10^{10-11} {\rm GeV}$
 - Spontaneous breaking of U(1)_{PQ}
 - Formation of cosmic strings

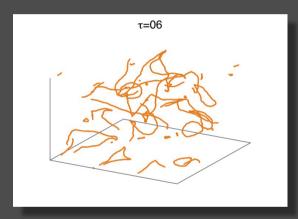
$$\phi = \langle \phi \rangle e^{ia/\eta} = \eta e^{ia/\eta}$$

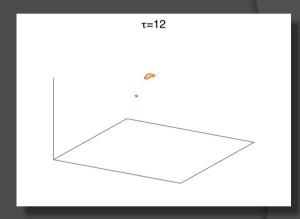
- \bullet $T \sim \overline{\Lambda_{
 m QCD}}$ $U(1)_{
 m PQ}
 ightarrow Z_{N_{
 m DW}}$
 - Axion acquires a mass (QCD instanton effect)
- \bullet $H \lesssim m_a$ ($T \lesssim 1 {
 m GeV}$)
 - Spontaneous breaking of Z_{NDW}
 - Formation of domain walls

$$V(a) \sim \Lambda_{\rm QCD}^4 \left[1 - \cos\left(N_{\rm DW} a/\eta\right)\right]$$

N_{DW} discrete vacua at


$$\theta = \frac{a}{\eta} = \frac{2\pi k}{N_{\text{DW}}}, \qquad k = 0, 1, \dots, N_{\text{DW}} - 1$$


Domain Wall Problem


Domain wall number N_{DW}

$$N_{\mathrm{DW}} = \mathrm{Tr}[Q_{\mathrm{PQ}}(q)I(q)]$$
 : depend on models

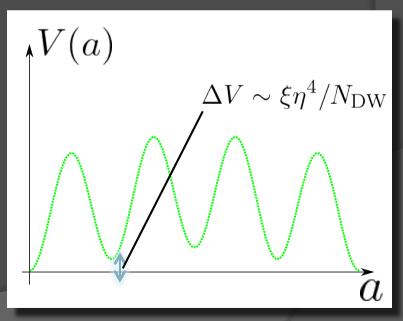
N_{DW} = 1; walls quickly disappear

- Strings decay due to the domain wall tension
- Axions produced by the decay contribute to the CDM component of the universe [work in progress]
- N_{DW} > 1; stable string-wall networks
 - Come to overclose the universe, hence problematic
 - Possible if we introduce a bias Sikivie (1982)

Model

Potential for the complex scalar

$$V(\phi) = \frac{\lambda}{4} (\phi^* \phi - \eta^2)^2 + \frac{m^2 \eta^2}{N_{\rm DW}^2} (1 - \cos N_{\rm DW} \theta) + \delta V$$
 bias


cosmic string

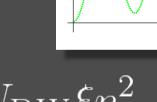
domain wall

The explicit Z_{NDW} breaking term (bias)

$$\delta V = -\xi \eta^3 (\phi^{-i\delta} + \text{h.c.})$$

- Lifts degenerate vacua
 - decay of walls
- ξ : free parameter $\xi \ll 1$

Bias

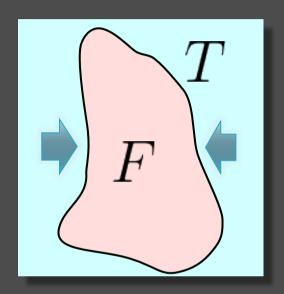

- $\bullet \xi \neq 0$
- Two forces acting on domain walls
 - Tension (straightens the wall)

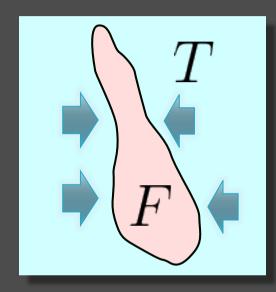
$$p_T \sim \sigma/R \sim m\eta^2/N_{\rm DW}^2 R$$

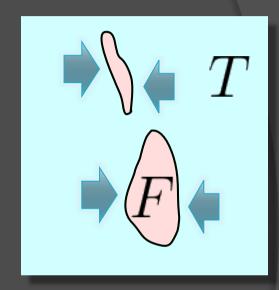
Pressure (collapses the wall)

$$p_V \sim \Delta V \sim \xi \eta^4 / N_{\rm DW}$$

Pressure dominates when




Decay time of walls


$$t_{\rm dec} \sim R \sim m/N_{\rm DW} \xi \eta^2$$

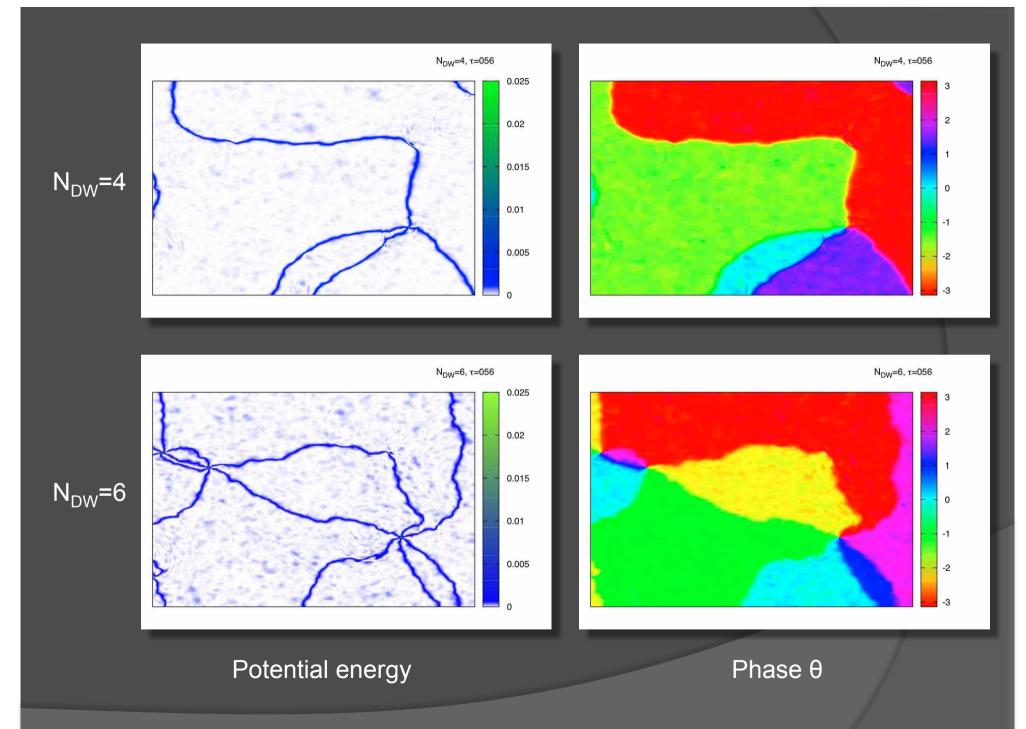
Collapse of domain walls

$$p_V \sim \Delta V \sim \xi \eta^4 / N_{\rm DW}$$

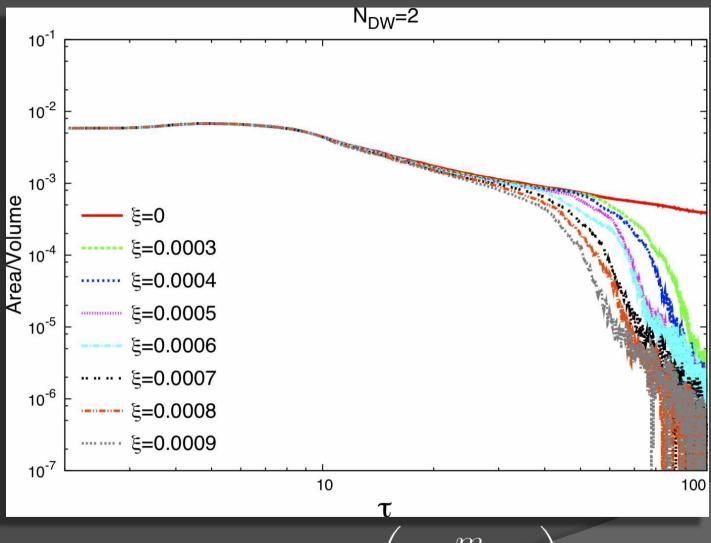
 Due to the volume pressure which caused by energy difference between two vacua (bias).

Setup of Lattice Simulations

lacksquare Solve the classical field equations for ϕ on 2D lattice


Solve the classical field equations for
$$\varphi$$
 on 2D lattice $\bar{\phi}_1'' - \nabla^2 \bar{\phi}_1 = -\lambda \bar{\phi}_1 (|\bar{\phi}|^2 - a^2) + 2a^3 \xi \cos \delta + \frac{a^4 m^2}{N_{\rm DW} |\bar{\phi}|} \sin \theta \sin N_{\rm DW} \theta \qquad \phi = \phi_1 + i \phi_2$ $\bar{\phi}_2'' - \nabla^2 \bar{\phi}_2 = -\lambda \bar{\phi}_2 (|\bar{\phi}|^2 - a^2) + 2a^3 \xi \cos \delta - \frac{a^4 m^2}{N_{\rm DW} |\bar{\phi}|} \cos \theta \sin N_{\rm DW} \theta \qquad \phi \equiv \bar{\phi}/a$

Input parameters
$$d\tau = dt/a \quad \phi' = \frac{d\phi}{d\tau}$$


Input parameters

Scheme	4 th Runge-Kutta
Number of grid	4096×4096
Era	Radiation dominated
Initial time	2 (in unit of η^{-1})
Final time	110
Time resolution	0.01
Box size	230
λ	0.1
m/η	0.1
$N_{ m DW}$, $$	varying

(au : conformal time)

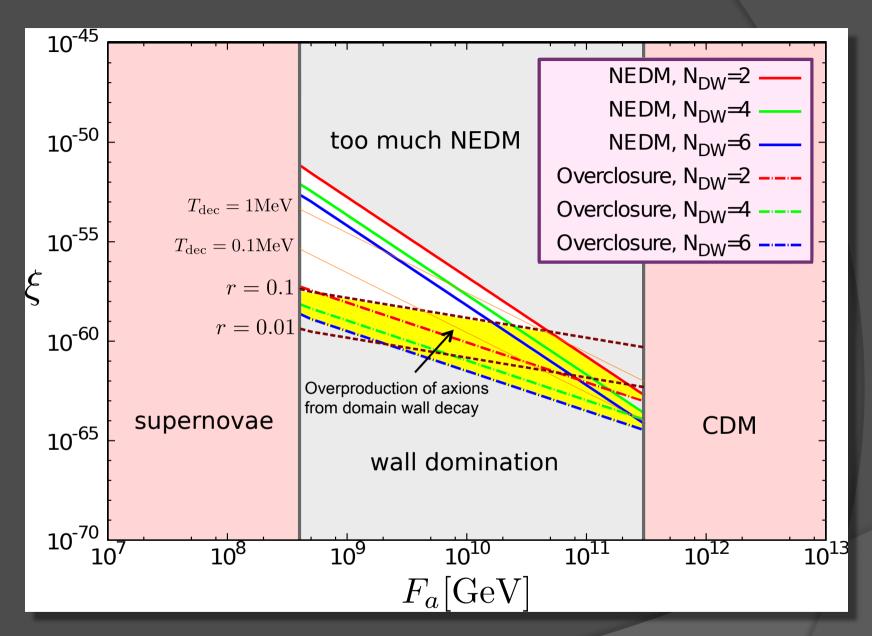
Time evolution of the area density

Fitted as
$$t_{
m dec} \simeq 18 imes \left(rac{m}{N_{
m DW} \xi \eta^2}
ight)$$

Bounds for ξ

- Neutron Electric Dipole Moment (NEDM)
 - The bias term δV spoils the PQ solution to the strong CP problem $\theta \sim \frac{\xi \eta^2}{m^2} < 10^{-10}$
 - Shifts the θ value from zero
 - ullet Observation of NEDM ullet Upper bound for ξ
- Overclosure bound
 - Wall dominates when

$$\rho_{\rm wall} \simeq \sigma/t \sim \rho_c \simeq 1/Gt^2$$


Lower bound for ξ • Require $t_{\rm dec} < t_{\rm WD}$ simulation

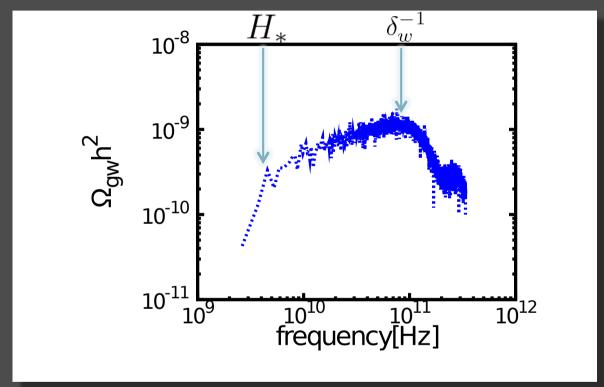
Cold axions from domain walls

- Decay of domain walls production of axions
 - The fraction $\mathcal T$ of the wall energy goes into axion radiations $ho_a(t_{
 m dec}) = r
 ho_{
 m wall}(t_{
 m dec})$
 - Radiated axions are barely relativistic with Lorentz factor $\gamma \simeq 60$ Nagasawa and Kawasaki (1994), Chang, Hagmann and Sikivie (1999)
 - become CDM component of the universe
- Abundance of cold axions from domain walls at the time of equality between matter and radiation

$$\Omega_a(t_{\rm eq}) \equiv \frac{\rho_a(t_{\rm dec})}{\rho_c(t_{\rm eq})} \approx 3 \times 10^{-29} \times r\xi^{-1/2} N_{\rm DW}^{-3/2} \left(\frac{60}{\gamma}\right) \left(\frac{0.15}{\Omega_M h^2}\right) \left(\frac{10^{12} {\rm GeV}}{F_a}\right)^{1/2} < \frac{1}{2}$$

- Another lower bound on ξ
- \(\gamma \)
 must be small.

Constraints become much severe if $\, \mathcal{T} \,$ is not suppressed


Gravitational Waves from DW

- Interactions of domain wall networks
 - Produce gravitational waves (GWs)
 - Become stochastic gravitational wave background
- Intensity of GWs depends on
 - Mass energy of the wall $G\sigma^2 \sim F_a^4 (m/M_P)^2$
 - Life time of the wall $t_{
 m dec} \sim m/\xi F_a^2$ Hiramatsu, Kawasaki and KS (2010)
- lacktriangle Small ξ
 - long life time
 - likely to produce GWs with large amplitude

Spectrum of GWs

Z₂ model of real scalar field

Hiramatsu, Kawasaki and KS, arXiv:1002.1555 Kawasaki and KS, arXiv:1102.5628

- Slope changes at the frequency corresponding to
 - Wall width : $f_* \sim \delta_w^{-1}$
 - Hubble scale at $t_{\rm dec}$: $f_* \sim H_* \sim t_{\rm dec}^{-1}$
- Nearly flat spectrum in the intermediate scales

Observable?

ullet Emission of GWs is terminated at $t_* \simeq t_{
m dec}$

Intensity
$$\Omega_{\rm gw} h^2 \equiv \frac{1}{\rho_c(t_0)} \frac{d\rho_{\rm gw}(t_0)}{d\log f} \sim 10^{-5} \frac{\rho_{\rm gw}(t_*)}{\rho_c(t_*)} \qquad \qquad \frac{\rho_{\rm gw}(t_*) \sim G \sigma^2}{\rho_c(t_*) \sim 1/G t_*^2}$$

$$\sim 5 \times 10^{-12} \times \left(\frac{4}{N_{\rm DW}}\right)^6 \left(\frac{10^{-58}}{\xi}\right)^2 \left(\frac{10^{10} {\rm GeV}}{F_a}\right)^4$$

Spectrum extends from

$$f = \frac{a(t_*)}{a(t_0)} H_* \sim 2 \times 10^{-11} \times \left(\frac{N_{\rm DW}}{4}\right)^{3/2} \left(\frac{\xi}{10^{-58}}\right)^{1/2} \left(\frac{F_a}{10^{10} {\rm GeV}}\right)^{3/2} {\rm Hz}$$
 to
$$f = \frac{a(t_*)}{a(t_0)} m \sim 6 \times 10^2 \times \left(\frac{4}{N_{\rm DW}}\right)^{3/2} \left(\frac{10^{-58}}{\xi}\right)^{1/2} \left(\frac{10^{10} {\rm GeV}}{F_a}\right)^{5/2} {\rm Hz}$$

Cf. DECIGO
$$\Omega_{\rm gw}h^2\sim 10^{-20}$$
 at $f\sim 10^{-1}{\rm Hz}$

Future experiments can detect signals probe axion models

Conclusion

- Domain wall problem can be avoided if domain walls decay before they dominate the energy density of the universe
- 2 dim Lattice simulation
 - Confirm the decay of the network
 - Estimate the time when walls decay
- Observational constraints are severe but do not completely rule out the scenario
 - Signals in future GW experiments can be used to probe the models with N_{DW}>1 (or exclude them)

Future prospects

- We need a detailed investigation about relic radiations produced by axionic domain walls
- N_{DW}=1 scenario
 - Estimation of axion CDM abundance produced by domain walls
- N_{DW}>1 scenario
 - Estimation of axion CDM and GW abundance produced by domain walls
 - Calculation of the GW spectrum
 - Determine uncertain factor γ
- Develop analysis in full 3D simulation [work in progress]

Appendix

Initial Conditions

• Treat ϕ_1 and ϕ_2 as two independent real scalar fields with correlation function $\phi = \phi_1 + i\phi_2$

$$\langle \phi_i(\mathbf{k}) \phi_i(\mathbf{k}') \rangle = \frac{1}{2k} (2\pi)^3 \delta^{(3)}(\mathbf{k} + \mathbf{k}')$$
$$\langle \dot{\phi}_i(\mathbf{k}) \dot{\phi}_i(\mathbf{k}') \rangle = \frac{k}{2} (2\pi)^3 \delta^{(3)}(\mathbf{k} + \mathbf{k}') \qquad (i = 1, 2)$$

- No correlation in the k space
 - \rightarrow Generate $\phi_i(\mathbf{k})$ as Gaussian with

$$\langle |\dot{\phi}(\mathbf{k})|^2 \rangle = \frac{k}{2} V_b \quad \langle |\phi(\mathbf{k})|^2 \rangle = \frac{1}{2k} V_b$$

$$\langle \phi(\mathbf{k}) \rangle = \langle \dot{\phi}(\mathbf{k}) \rangle = 0 \qquad V_b \simeq (2\pi)^3 \delta^{(3)}(0)$$

$$: \text{volume of the simulation box}$$

 \rightarrow Fourier transform to obtain $\phi_i(\mathbf{x})$ and $\dot{\phi}_i(\mathbf{x})$

Comments on the numerical study

- One must consider three extremely different length scales
 - Core of the sting $\delta_s \sim 1/\sqrt{\lambda}\eta \sim \text{const.} > \text{lattice spacing} \sim a(t)$
 - Width of the wall

$$\delta_w \sim m^{-1} \sim \text{const.} > \text{lattice spacing} \sim a(t)$$

• Hubble radius $H^{-1} \sim t < \text{simulation box}$

 At the final time of the simulation, the core of the string is marginally resolvable

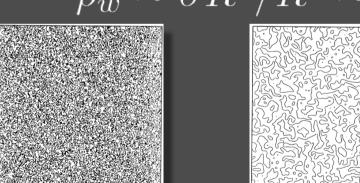
$$\frac{H^{-1}}{a(t)\delta x}=\frac{2N}{b}t^{1/2}\simeq 1024,\quad \frac{\delta_w}{a(t)\delta x}=\frac{N}{bm}t^{-1/2}\simeq 3.2,\quad \frac{\delta_s}{a(t)\delta x}=\frac{N}{b\lambda^{1/2}}t^{-1/2}\simeq 1.01$$
 at $t=t_f=1601\eta^{-1}$
$$\delta x=b/N \text{ : lattice spacing}$$

Effect on Big Bang Nucleosynthesis (BBN)

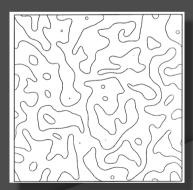
 Domain walls dominates the energy density of the universe at the temperature

$$T \simeq 8 \times 10^{-2} \times \left(\frac{F_a}{10^{12} \text{GeV}}\right)^{1/2} \text{MeV}$$

- The wall domination occurs after the BBN epoch
- During the BBN epoch Domain walls contributes as an extra particle d.o.f.


$$\rho_{\text{extra}}(t_{\text{BBN}}) = \frac{\pi^2}{30} \frac{7}{8} (N_{\nu} - 3) T_{\text{BBN}}^4 = \rho_{\text{wall}}(t_{\text{BBN}}) = \sigma H_{\text{BBN}}$$

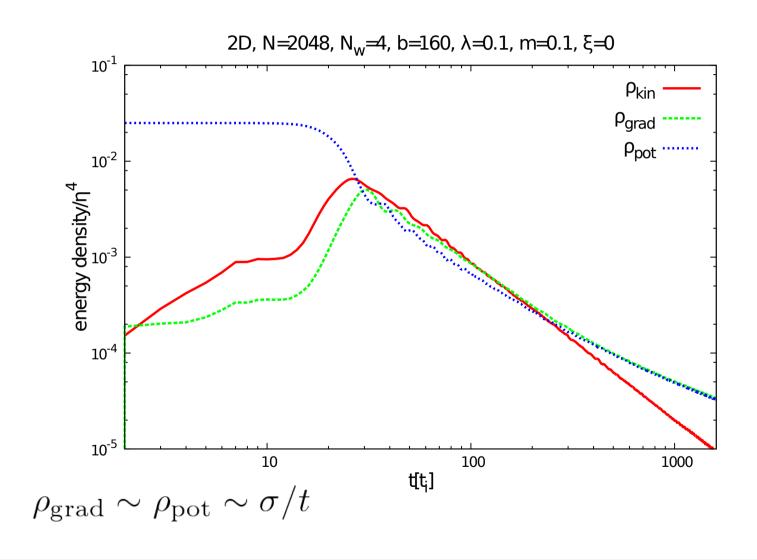
- $oldsymbol{\circ}$ Observations indicate $N_{\nu} \lesssim 4$
- However, the contribution from domain walls is negligible


$$N_{\nu} - 3 = 8.4 \times 10^{-2} \times \left(\frac{F_a}{10^{12} \text{GeV}}\right)$$

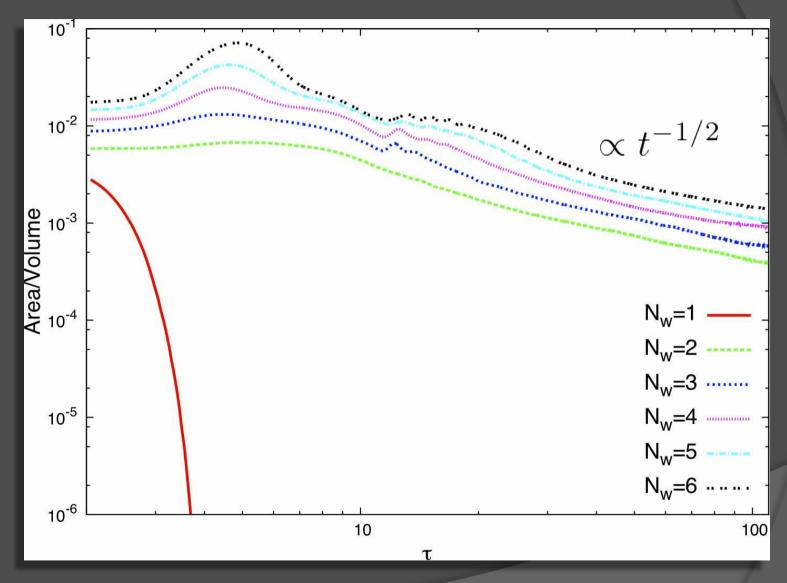
Scaling Solution Press, Ryden, and Spergel (1989)

- $\bullet \xi = 0$
- One wall per one Hubble radius
 - $L \sim R \sim H^{-1} \sim t$ where L is the distance of two neighboring walls and R is the curvature radius of walls
 - Energy density $\rho_w \sim \sigma R^2/R^3 \sim \sigma/t$

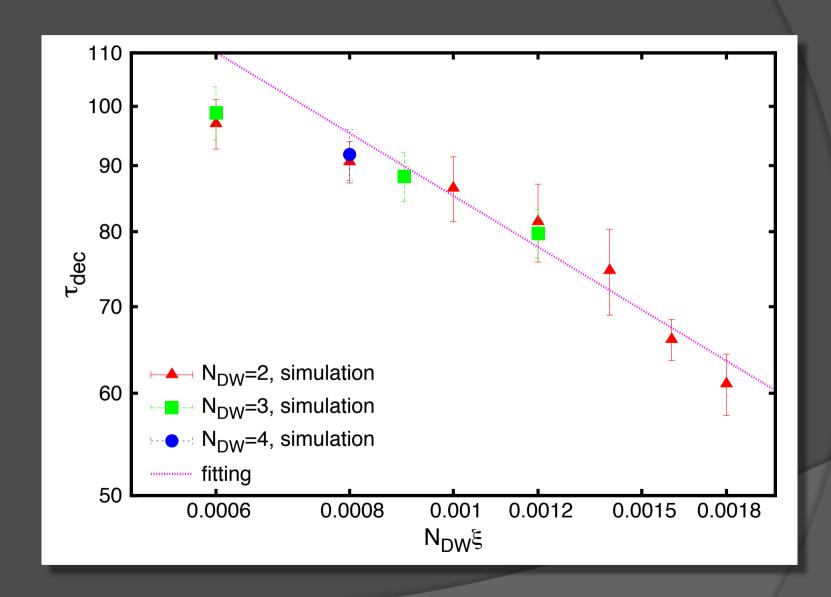
Surface mass density of the wall $\sigma \simeq 9mF_{\sigma}^{2}$


Hubble radius / Box size

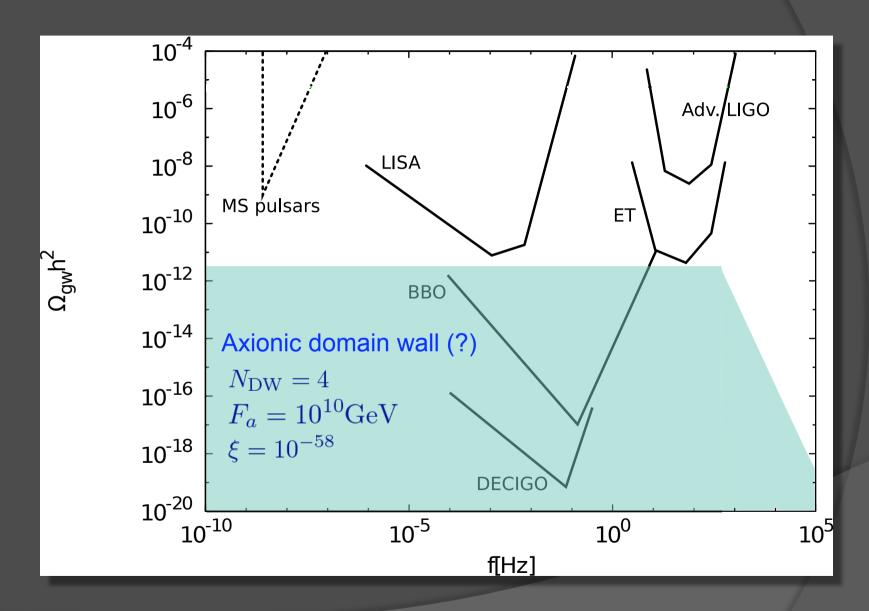
1/100


1/30

1/10


Energy density

Area Density ($\xi=0$) $A/V \propto 1/t^{1/2}$


Relation between $\tau_{\rm dec}$ and $N_{\rm DW}\xi$

Solutions to the DW Problem

- Possible solutions:
 - Embed Z_{NDW} in the center of another continuous group
 Lazarides and Shafi (1982)
 - Can be realized only for a particular set of charge assignments
 - Inflation after PQ phase transition
 - Constraints from isocurvature perturbations
 - Unstable domain walls Sikivie (1982)
 - Domain walls decay before overclose the energy density of the universe
 - Possibility? Constraints? Any implications for observations?

Schematics

